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Abstract 

An alternative approach is introduced to determine the 
grain size distribution directly from the shape of the line 
profile in X-ray diffraction from a crystalline powder. 

I. Introduction 

In a crystalline powder, small crystals are oriented in 
random directions. The diffraction of X-rays from the 
powder gives a set of rings (Debye-Scherrer lines) 
corresponding to reflection from the (hkl) planes of the 
structure. If each crystal is perfect, then the broadening 
of the line profiles (after correcting for instrumental 
effects), reflects the finite size of the crystals in the 
powder. The intensity in a Debye-Scherrer line profile 
can be written as (Bertaut, 1950: Guinier, 1963) 

sin2Nx/2 
I ( x ) =  Z g(N) N(x/2) 2. (1) 

N = I  

In this equation, x = Sdhk t, where dma is the distance 
between (hkl) planes and s = IS - G I is the deviation 
parameter defined by 

4re 
s = -  (sin 0 -  sin Ohkt), 

2 

where Ohk t is the Bragg angle and 2 is the wavelength of 
the X-rays. Bertaut's (1950) theorem of X-ray diffrac- 
tion from a crystalline powder states that 'The profile 
of the (hkl) line is the same as that of the diffraction 
pattern for a set of parallel and incoherent segments 
whose lengths are distributed like the diameters of the 
grains normal to the reflecting plane (hkl)' (Guinier, 
1963). In other words each term in (1) is the intensity 
function equivalent to the scattering of a plane wave 
from a segment of a straight line of length Ndhk r In (1) 
g(N) is the volume distribution function of that portion 
of the grain (or grains, if they have different sizes) that 
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has the length Ndhk I normal to the (hkl) plane. The 
volume distribution function g(N) is directly related 
to the crystal size distribution and the crystal shape 
g(N) is normalized such that 

oo 

Z g ( N ) =  1. (2) 
N =  1 

It has been stated that g(N), the volume distribution 
function, cannot be obtained directly from (1) (Guinier, 
1963). Bertaut (1950) has shown that g(N) can be 
obtained, however from the second derivative of the 
Fourier transform of the intensity I(x). 

Numerous applications of his method have appeared 
in the literature (Sashital, Cohen, Burwell & Butt, 
1977). The usual procedure, after taking the data, is to 
take their Fourier transform, remove the instrumental 
contribution by the Stokes method (Guinier, 1963), and 
plot the second derivative of the resulting function to 
obtain the volume distribution function, g(N). Bertaut's 
method assumes the kinematic approximation and 
therefore is limited, for accurate results, to grain sizes 
of roughly less than 100 lattice constants. This particle 
size range is especially useful in catalysis, thin-film 
growth, and some metallurgical phenomena. 

In this paper, we show that a direct inversion of (1) is 
possible. We believe this leads to an easier and more 
direct determination of the volume distribution function 
g(N). Our treatment, just as Bertaut's, is based on 
kinematic theory. In the next section we shall present 
the mathematical derivation of g(N) in terms of the 
intensity function I(x). Some model calculations are 
given in the following section. 

II. Derivation ofg(N) 

Equation (1) can be rewritten as 

I(x) = g(N) sin 2 N -  
N 2 

N = I  

___ 1 ~o g ( N )  
__~ ~ (1 - cos Nx). 

N = I  
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(3) 
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Defining 

G(x)  = - - -  

we have, from (3), 

where 

and 

2 X 
I(x) ,  

2 

oO 

G(x)  = A  o + Z A u c ° s N x '  
N = I  

oo g(N) 

A ° = -  Z N 
N = I  

- constant, 

(4) 

g(N) 
A u --  

N 

Equation (4) states that the A N are  the coefficients of a 
Fourier cosine series of the function G(x). Therefore, 
the inversion gives 

A s  _ __g(N) 1 ( G ( x )  cos Nx dx, 
N rc J 

o r  N; 
g(N) = - -  G(x) cos Nx dx, (5) 

7Z 
- - r e  

for N :¢: 0. The intensity is normalized such that 

1 
[ G(x) dx = A,,. (6) 

2re J 

Equation (5) is the basic result of this paper. It allows 
determination of the volume distribution function g(N)  
directly from G(x),  which contains the intensity 
function I (x) .  It should be remarked again that l ( x )  
assumes the instrumental broadening has been removed 
from the measured profile. This can be done in the 
standard way (Stokes method; Guinier, 1963) or by an 
iterative deconvolution of the instrumental profile. 

II1. Model  calculat ions  

We now present model calculations of the distribution 
function g(N) for a given intensity function, I(x) .  

Figs. 1 and 2 show the distribution function g(N) 
evaluated for a Gaussian intensity distribution of the 
form l (x)  ~ exp (--aZ.x'2), where a 2 has been taken to be 
2 and 300 respectively. If we take 2 = 1 -~ and dh, t = 
3 AI I ( x )  w. exp ( - 2  x z) and I (x )  w. exp ( -300  x 2) cor- 
respond to first-order diffracted beams with angular 
width of A (20) ~ 2 and A (20) ~ 0.15 o. The solid curve 
in the figures represents the distribution function g(N)  

obtained from a noise-free intensity profile. The same 
result is obtained with Bertaut's (1950) method. The 
dashed curve gives g(N) obtained from an intensity 
profile to which +2% random noise has been added. 

In all cases it is assumed that instrumental broaden- 
ing has been removed by deconvolution. For the curves 
in Fig. 1, the integral in (5) was taken over the entire 
Brillouin zone, i.e. from -zr to zr. The size distribution 
is well reproduced for the noisy data. Fig. 2 represents 
the size distribution for a much narrower intensity 
profile. For the noise-free data, the integral is again over 
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Fig. I. The volume distribution function g ( N )  calculated from a 
Gaussian intensity profile l ( x )  oc exp ( -2x2 ) .  N is the number 
of  lattice constants.  For  2 = 1 A and dh, t = 3 A. this intensity 
profile corresponds to a first-order diffracted beam with physical 
width A(20)  = 2 °. Solid curve: exact result, for intensity profile 
without noise; dashed curve: for intensity profile to which _+2% 
random noise has been added. The maximum in the curve is 
related to the average grain size normal to the (hkl) plane. The 
fact that g ( N )  has negative values for small N indicates that a 
Gaussian function does not represent a realistic intensity 
distribution. 
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Fig. 2. The volume distribution function g ( N )  calculated from a 
Gaussian intensity profile l ( x )  c~ e x p ( - 3 0 0 x 2 ) ,  corrcsponding 
to a much smaller angular width. A(20) = 0.15 °. for tile same 
conditions as in Fig. 1. Solid curve: exact result, for intensity 
profile without noise: dashed curve: for intensity profile to which 
+ 2 %  random noise has been added. The maximum in the curve 
is related to the average grain size normal to the (hkl) plane. 
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the whole Brillouin zone. However, for the curve with 
+ 2 %  noise, the noise dominates the signal in the wings. 
Therefore, the integral in (5) was chosen from - 0 . 1 5  to 
+0.15,  the region of significant intensity in the peak. 
The size distribution is again reproduced for the noisy 
data. 

We next consider a Lorentzian intensity function of 
the form I(x) = 1/(1 + b2x 2) and a double-square-type 
intensity function of the form l (x )  = 1/(1 + b2x2) 2. 
The volume distribution functions g(N) for these 
intensity functions are shown for 2 = 1 A, dhkt = 3 A in 
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Fig. 3. The volume distribution function g(N) calculated from a 
Lorentzian intensity profile 1/(1 + 3x2). Solid curve: exact result. 
for intensity profile without noise; dashed curve: with _+2% 
random noise added. The maximum in the curve is related to 
the average grain size normal to the (hkl) plane. 
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Fig. 4. The volume distribution function g(N) calculated from a 
double-square type intensity profile 1/(1 + x2) 2. Solid curve: 
exact result, for intensity profile without noise: dashed curve: 
with +2% random noise added. The maximum in the curve is 
related to the average grain size normal to the (hkl) plane. 

Figs. 3 and 4 respectively. The corresponding angular 
widths for a first-order diffraction maximum are about 
2 ° for both profiles. The integrals to determine g(N) are 
in all cases over the whole Brillouin zone. 

In general, it is not possible to determine the size of 
the crystals from the volume distribution function g(N). 
However, if one knows a priori the shape of the 
crystals, it is possible to calculate the true size 
distribution of the crystals (for the particular shape 
under consideration) from g(N). This is well known, 
(Guinier, 1963), and is independent of the method by 
which g(N) is obtained. Thus the method presented 
here can be used to determine size distributions of 
particles whose shape is known. 

I V .  C o n c l u s i o n s  

We have shown that, in X-ray diffraction from a 
crystalline powder, the volume distribution function 
g(N),  which describes the portion of the grains that 
have the length Ndhkt normal to the (hkl) plane, is the 
set of Fourier coefficients of a function G(x) that 
contains the intensity distribution l(x).  Therefore g(N) 
can be obtained by direct Fourier inversion of the 
function G(x). Model calculations of g(N) for both 
Gaussian and Lorentzian intensity functions have been 
presented. 

The derivation of our result is simple and physically 
transparent.  Moreover, this method can be generalized 
to two- and three-dimensional problems. The two- 
dimensional analog of this theory can be used, for 
example, to determine straightforwardly the two- 
dimensional island size distribution in an adsorbed 
overlayer or the superionic cluster size distribution in a 
superionic conductor. An application in three dimen- 
sions would be the determination of the size dis- 
tribution of precipitated phases in a solid solution 
growing with the 'Widmanstiitten structure'. 
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